Math 4A Week 5 - November 3, 2014

1. Is the x-axis on the $x y$-plane a vector space?

2(i). Is \mathbb{R}^{2} a subspace of \mathbb{R}^{3} ?

2(ii). Is $\left\{A \in M_{2 x 2}: \operatorname{det}(A)=1\right\}$ a subspace of $M_{2 x 2}$?

3(i). Is $\left\{\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}0 \\ 2 \\ 3\end{array}\right),\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 3\end{array}\right)\right\}$ a basis of \mathbb{R}^{3} ?

3(ii). Let S be a linearly independent set in \mathbb{R}^{2}. Does it contain a basis for \mathbb{R}^{2} ?
4. Given matrix A,

$$
A=\left[\begin{array}{lllll}
3 & 8 & 0 & 0 & 0 \\
0 & 0 & 5 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

(i). Is $\left(\frac{1}{3}, \frac{1}{8}, 0,0,0\right)$ in the Null space of A ?
(ii). $\operatorname{Nul}(A)$ is a subspace of $\mathbb{R}^{n} \cdot n=$? What is the dimension of $\operatorname{Nul}(\mathrm{A})$?
(iii) $\operatorname{Col}(A)$ is a subspace of $\mathbb{R}^{m} \cdot m=$? What is the dimension of $\operatorname{Col}(A)$?

